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ABSTRACT

The first stage of any system for automatic speech recognition (ASR) is a signal-
processing "front end" that converts a sampled speech waveform into a more suitable rep-
resentation for later processing. Several front ends are compared, three of which are based
on knowledge about the human auditory system. The performance of an ASR system with
these front ends was compared to a control mel filter bank (MFB)-based cepstral represen-
tation in clean speech and with speech degraded by noise and spectral variability. Using
the TI-105 isolated word data base, it was found that auditory front ends performed com-
parably to MFB cepstra, sometimes slightly better in noise. With MFB cepstral recogni-
tion error rates ranging from 0.5% to 26.9%, depending on signal-to-noise ratio (SNR),
auditory models could perform as high as four percentage points better. With speech
degraded by linear filtering, where MFB cepstra showed error rates ranging from 0.5% to
3.1%, auditory outputs could improve performance by as much as 0.4% for conditions
with high baseline error rates. This performance gain comes at a significant computational
expense-approximately one-third real time for MEFB cepstra as opposed to as much as
over 100 times real time for auditory models. These results disagree with previous studies
that suggest considerably more improvement with auditory models. However, these earlier
studies used a linear predictive coding (LPC)-based control front end, which is shown to
perform significantly worse than MFB cepstra under noisy conditions (e.g., 2.7% error
rate with mel-cepstra vs. 25.3% with LPC at 18-dB SNR). Data-reduction techniques such
as principal component analysis (PCA) and linear discriminant analysis (LDA) were also
evaluated. PCA provided no gain in noise and slight gain with spectral variability. LDA on
MFB energies improved performance for more difficult spectral variability conditions.
LDA provided significant performance improvement (as much as 4.7% word error with
LDA compared with 94.8% for mel-cepstra) with speech degraded by both noise and
spectral variability when the LDA is trained on examples of corrupted speech.
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1. INTRODUCTION

This work is concerned with systems for automatic speech recognition (ASR). Such systems convert
a continuous speech waveform produced by a microphone or telephone receiver into a linguistic message
representing a speaker's meaning. In almost any "real-world" ASR system, degradation of the speech sig-
nal and addition of noise make this task significantly more difficult

Figure 1 is an overall block diagram of such an ASR system. An initial signal-processing stage, or
"front end," converts the noisy and degraded speech waveform into a representation more suitable for fur-
ther processing. A pattern-classification module compares this intermediate representation to models that
have been computed for relevant linguistic units such as words or phonemes (speech sounds). Finally, in
more complex systems, a linguistic module further constrains the set of possible system outputs using
higher level knowledge about the grammar of the task for which the ASR system was designed.

SPEECH ASR SYSTEM

SACOUSTIC LANGUAGE
MODELS MODELS

SI~ GNAL (OPTIONAL)

gb"." PROCESSING CLSIFE ENGINE I

FRtONTeND CASPTIONAL)

NOISE

UNGUISnlC
l•ESSAGE

Figure 1. Block diagram of a generic automatic speech recognition (ASR) system.

The concern here is only with how the first stage, the front end, affects overall system performance.
This signal-processing module is required for two reasons:



" The data rate of a sampled speech waveform (typically 8000-16,000 samples per second) is pro-
hibitively high for pattern classifiers to process the waveform directly. A common rate for the
intermediate representation is 100 samples per second. This does not correspond to an 80-160
times reduction in overall data rate, because the intermediate representation typically consists of
several parameters per sample. A data reduction of 3-6 times is typical for systems in this study.

"* There is much redundancy in the unprocessed speech waveform. For optimum pattern classifica-
tion performance, earlier system components should reduce this redundancy as much as possible
so that the useful information content of the intermediate representation is maximized.

Traditionally, ASR systems have employed front ends based on standard signal-processing tech-
niques such as filter banks, linear predictive coding (LPC), or homomorphic analysis ("cepstra"). ASR sys-
tems based on dynamic programming or probabilistic techniques might use these features directly in a
pattern classifier, while acoustic-phonetic-based systems use these parameters to derive more linguistically
relevant features.

There has also been interest in front ends based on known properties of the human auditory system.
Some of these front ends remain linear but with parameters that more closely correspond to the auditory
system (e.g., filter bank bandwidths increasing with frequency) [1], although most of the auditory-based
front ends are quite nonlinear because many physiological and/or perceptual processes in the auditory sys-
tem are known to be quite nonlinear [6][181.

In addition, recent work has focused upon the use of traditional data-reduction techniques such as
linear discriminant analysis (LDA) to automatically generate new features with maximum classification
power for a given feature vector size. Conversely, these techniques can be viewed as providing the mini-
mum feature vector size for a given recognition performance level. Such techniques have been shown to be
successful in recognition tasks, especially when speech is degraded by noise or spectral tilt [7].

Front ends based on the auditory system and pattern classification have both been shown to outper-
form more traditional signal-processing schemes in ASR tasks [6][7][18][21]. In these evaluations, a par-
ticular front end is typically compared against one control representation for a given ASR task. The control
front end, ASR task, and speech corpus all differ.

In this work several front ends are compared, including a single high-performance "control" repre-
sentation, and the performance of an ASR system based on them is evaluated, performing the same recog-
nition task. Two of these front ends are based on the human auditory system, while another is derived from

pattern-classification techniques.
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2. FRONT ENDS

This section describes the front ends that were compared in this study. The indicated references pro-
vide more detailed information.

2.1 MFB CEPSTRA

The "control" front end is a mel filter bank (MFB)-based cepstral transformation [I]. In this front
end the speech waveform is windowed every 10 milliseconds, and a Fourier transform is computed for
each windowed waveform segment. In the frequency domain, each waveform segment is then processed
with a filter bank. The center frequencies of the filters are spaced on a linear scale from 100 to 1000 Hz and
on a logarithmic scale above 1000 Hz. In the nonlinear region, each center frequency is 1.1 times the pre-
vious center frequency. Each filter's frequency response has a triangular shape, with the magnitude
response equal to zero at the center frequencies of the adjacent filters as shown in Figure 2.
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FigureZ 2.Lnear filters for mel filter bank (MFB)front end.

A vector of log energies derived from the filter bank is then processed by an inverse cosine transform
[11 creating a vector of MEB cepstral coefficients ("mel" comes fro..Ai the mel-scale, a mapping from
acoustic frequency to perceptual frequency). The cepstral coefficients are then passed to the later stages of
the speech recognizer. The vectors of log filter bank energies and MFB cepstral coefficients are computed
every 10 milliseconds. On a SPARCstation 2 workstation, the MFB cepstral front end operates in roughly
one-third real time.
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2.2 SENEFF AUDITORY MODEL

The first "test" front end f- r this work is an auditory-based scheme proposed by Seneff [18]. The first
stage is a bank of time-domain infinite-impulse-response (11R) linear filters. These have been carefully
designed to match ph) siological data on the response of a cat's basilar membrane to acoustic stimuli [2].

The seccod stage of Seneff's front end models the transduction stage of signal processing in the
inner ear, or the translation of basilar membrane motion into auditory nerve firing patterns. An efficient
approximation to a half-wave rectifier, followed by an algorithm modeling short-term adaptation, a
low-pass filter, and finally an automatic gain control (AGC), perform this transformation.

The third stage of Seneff's model has two branches. The "mean rate" branch simply processes each
of the channel outputs from the second stage with a low-pass filter. This filtered output models the average
firing rate of the auditory nerve fibers corresponding to a given channel. The second "synchrony" branch
uses a "generalized synchrony detector" (GSD) to measure the extent that a second-stage channel's output
is periodic with the characteristic period of that channel (1/f, where f is the center frequency). The
higher auditory processing centers in the brain might make use of both rate and synchrony information
during recognition of speech. For all evaluations with Seneff's model, there are two separate sets of
results: one for the "mean rate" branch and one for the "synchrony" branch.

On a SPARCstation 2 workstation, Seneff's model operates in approximately 40 times real time.
This is primarily due to the time domain nature of all processing stages in the model, which are quite com-
putationally expensive when compared to the frequency-domain techniques used in the MFB cepstral
model.

2.3 EEIH AUDITORY MODEL

A second auditory front end is the Ensemble Interval Histogram (EsI) model developed by Ghitza
[6]. The EIH model begins with a physiologically based time-domain linear filter bank much like the first
stage of Seneff's model.

A bank of "level crossing detectors" then processes each of the filter bank channels. Each level
crossing detector has an amplitude threshold and records the times when the first stage output crosses the
amplitude threshold while exhibiting a positive slope, subject to the constraints that only the last 20 cross-
ings will be recorded and no crossings occurring more than 40 milliseconds before the current time will be
kept. Figure 3 schematically illustrates the operation of level crossing detectors for levels L to L4 with
At shown for L1 .

Each first-stage channel has 12 level crossing detectors, corresponding to 12 logarithmically spaced
amplitude thresholds. The detectors record the frequencies corresponding to the times between the positive
crossings, using the relation f = I / (At), and accumulate this data in frequency histograms. These histo-
grams are then combined across levels into a single histogram for each channel. An EIH is obtained by
combining these histograms across all channels. An EIH can be calculated at any desired sampling rate;
100 samples per second was chosen to have one consistent sampling rate for each front end.

4
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Figure 3. Level crossing detectors from the EIH modeL

On a SPARCstation 2, the ElH model runs in approximately 120 times real time. Approximately
40% of the total computation time is devoted to first-stage linear filtering, and another 40% is used to
upsample the first-stage filter outputs by a factor of eight before the level crossing detectors. This upsam-
piing is necessary to obtain reasonable frequency accuracy at high frequencies.

2.4 DATA-REDUCTION TECHNIQUES

Some of our experiments use techniques to reduce the amount of data the speech recognizer receives
from the front end. Two data-reduction techniques-principal components analysis and linear discriminant
analysis--are described here.

2.4.1 Principal Components Analysis

Principal components analysis (PCA) is a linear transformation on an input feature space, producing
a modified feature space, according to

"19i = A''ti 9

where 1i is the ith input feature vector, -i is the corresponding transformed feature vector, and A is a
transformation matrix. A is determined such that the individual elements of all .'i are uncorrelated; i.e.,
the covariance matrix of the set of transformed feature vectors 1' should have nonzero elements only on
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the main diagonal. Computing A is relatively straightforward; the rows of A are the eigenvectors of the
covariance matrix for 1i [221.

2.4.2 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a linear transformation on the input feature space, as is PCA.
The calculation of the transformation matrix A is different, though; while PCA uncorrelates the input fea-
tures, LDA maximizes some measure of class separability. Fukunaga [5] contains more details on this pro-
cedure. Because LDA uses a measure of separability between classes of input data, each input feature
vector must be associated with a class before A can be calculated. LDA is thus a supervised procedure.

Two methods are used here for assigning each input feature vector a "class"; they are referred to as
the "clustering" method and the "TIMIT" method.

"Clustering Method: For this technique, a hidden Markov model (HMM) speech recognizer first
processes the speech used to "train" the LDA front end. During recognition, for each word the
HMM system will produce a maximum likelihood state sequence, or a most probable mapping
from input frame to HMM state. Starting with one cluster for each HMM state, Leader cluster-
ing [23] is then applied to all speech frames to reduce the number of clusters. Each cluster can
then be considered a class and the LDA procedure can be calculated accordingly. The number of
clusters can be specified, depending on the application.

"TIMIT Method: This method uses the phonetic labels of the TIMIT database [3] as classes for
the LDA calculation. When using LDA on TI-105 mel filter bank energies, it is unnecessary to
estimate a spectral transformation across data bases, as a constant additive vector does not
change an LDA rotation matrix. For the auditory model outputs, though, such a transformation is
required due to the nonlinear nature of the auditory front ends.

Hunt and Lefebvre [7] applied a linear-discriminant-based signal-processing scheme called
IMELDA (Integrated MEL-scale linear Discriminant Analysis) to a mel-scale filter bank and showed sig-
nificant performance improvements in noise and with spectral shape. These results were with a digit task,
using the word as the class for the LDA procedure.

6



3. ISOLATED WORD EXPERIMENTS

This section describes a collection of experiments performed with the various front ends using an
isolated-word speech recognizer.

3.1 EXPERIMENTAL CONDITIONS

3.1.1 Data Base

The speech data base used was the TI-105 isolated-word data base .[17], with a vocabulary of 105
command-type words. Eight speakers (five male and three female) spoke five training tokens of clean
speech and two testing tokens of clean speech for each vocabulary word.

3.1.2 Recognition System

An isolated-word HMM recognition system was used for evaluation. Each word was modeled as a
sequence of eight states. While in each state, the probability density function for an observation vector was
a multivariate normal distribution with a diagonal covariance matrix. This covariance matrix was shared
across all HMM states in the system so that only the mean of the probability distribution distinguished one
state from another. These diagonal and tied characteristics of the covariance matrix were chosen because of
the relatively small amount of training data available. Paul [10] and Rabiner [16] provide much detailed
information on HMMs and HMM speech recognition systems.

The recognizer is run in speaker-dependent mode; all results shown are overall word error rates aver-
aged across all eight speakers.

3.1.3 Front End Processing

When using the MFB cepstral front end, the HMM recognizer directly used cepstral vectors, along
with measures of change, as input feature vectors. The Seneff and EIH models required additional process-
ing. An inverse cosine transform converted each auditory model "pseudo-spectral" vector to a cepstral-like
representation. Instead of converting log filter bank energies to cepstral coefficients, as in the MFB cepstral
front end, Seneff and EIH outputs were converted to cepstra. The use of a diagonal covariance matrix in
the recognition system suggested this additional processing; the raw Seneff and EIH features are probably
not uncorrelated, as a diagonal covariance matrix assumes. Pols [13] has suggested that the MFB cepstral
transform performs a crude principal components analysis, which has been shown to uncorrelate the input
features.

For the MFB cepstra and mean-rate front ends, the recognizer used 12 cepstral coefficients and 13
cepstral first-difference coefficients, as absolute energy was not used. For synchrony and EIH, the system
used 24 cepstral coefficients and 25 first-difference coefficients. More coefficients were used for synchrony
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and EIH because these two representations produce sharper spectral peaks. For a rational transfer function
of the form

Mrfl (,-a:-')
X(z) = k=1

k= I

i.e., zeros at ak and poles at ck all inside the unit circle, the complex cepstrum [15] takes the form

n nk[n] = Ik n>O =
k=l k=I

For models such as synchrony and EIH that resolve spectral peaks highly, the "poles" are closer to
the unit circle; the cepstrum-simply the real part of the complex cepstrum described above-should
therefore decay slower and require more coefficients to preserve similar information.

3.1.4 Noise

The first set of experiments evaluated the performance of front ends and data-reduction techniques
under noisy conditions. In real-world applications, speech-recognition systems would most certainly oper-
ate under noisier conditions than are typical in the laboratory.

Instead of adding white or pink noise, speech "babble" was added from a NATO data base of
recorded noise [19]. The babble was recorded by placing a microphone in a common area where many
people congregate and carry on conversations. The speech babble should simulate possible real-word noise
conditions more accurately than artificially generated noise.

Noise was added to the isolated word utterances at various signal-to-noise-ratios (SNRs). The SNR
was measured by calculating the ratio of speech energy to noise energy, where each energy was measured
by averaging the square of the signal level across the entire utterance. This is the same measurement tech-
nique Ghitza used in evaluating the EIH model [6].

3.1.5 Spectral Variability

Experiments were also conducted with speech processed by linear filters to approximate the spectral
variability that a recognizer might see under real-world conditions. Three sets of conditions were evalu-
ated.

8



. Head Shadow: As a talker rotates his/her head in the horizontal plane, one can reasonably
model the effect on the listener as a linear filter [4]. Both 90" and 180" head shadow was mod-
eled.

. Talking Style: As a talker varies his/her talking style, a change is seen in the long-term spectral
characteristics of the speech. The overall changes in talking style cannot be modeled merely
with a linear filter, these experiments only attempt to characterize typical spectral variability.
The long-term spectral differences between "normal" speech and speech spoken as both "soft"
and "loud" were calculated using the Lincoln-style isolated-word stressed-speech data base [8].

. Recording Conditions: Speech recorded at different sites and under different recording condi-
tions exhibit varied long-term spectral characteristics. Here the difference between the TIMIT
speech data base [3] and a pilot corpus for the Wall Street Journal data base [12] was calculated.

Figure 4 shows smoothed plots of the frequency responses used for these various conditions.
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t ~Figure 4. Smoothed frequency responses for various spectral variability conditions..
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3.1.6 Multistyle Training

Some experiments used multistyle training, whereby a recognizer is trained with samples of cor-
rupted (e.g., noisy, filtered) speech as well as "clean" speech. This technique has been successful in recog-
nizing stressed speech [8]. For LDA, all four possible training permutations were evaluated under different
conditions: training the LDA transformation matrix on clean and multistyle speech, and subsequently
training the HMM recognizer on clean and multistyle speech. The results of these evaluations are reported
for various experimental conditions and results described below. When using multistyle training, for each
training utterance a sample of clean speech as well as a sample at each testing SNR or linear filtering con-
dition was including in the training set.

30

--D- MFB CEPSTRA

25 ,-,- MEAN RATE

'.&.. SYNCHRONY

S20
0-4 EIH

E
0
E
WU 10

CLEAN 30 24 18 12 6
SNR (dB)

Figure 5. Error rates of MFB cepstra and auditory front ends in noise.

3.2 RESULTS IN NOISE

The HMM recognizer was trained with clean speech and tested with noisy speech for the first set of
experiments in noise. Figure 5 shows the error rates of the recognizer with various front ends as a function
of SNR. The following can be seen:

Considering the disparate processing methods, all front ends perform quite similarly overall.
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"* For clean speech and 30-dB SNR, all auditory models perform similarly to the MFB cepstral
representation.

" Below 30-dB SNR, the auditory models perform slightly better than the MFB cepstral represen-
tation. For all these cases, the difference between the auditory models and the MFB cepstral
front end is from 0.6 to 4 percentage points (depending on the SNR), which exceeds a binomial
standard deviation of the MFB cepstral error rate.

"* The performance of all front ends degrades considerably at very high noise levels, making the
usefulness of the system questionable.

A second set of experiments evaluated the effectiveness of multistyle training on the various front
ends with noisy speech. Figure 6 shows the error rate averaged across all front ends, both without and with
multistyle training. The individual front ends exhibited trends similar to those seen in Figure 5. From this
figure it is clear that:

"* For SNR of 24 dB or higher, multistyle training results in a slight performance improvement.

"* For SNR of 18 dB or lower, multistyle training provides substantially greater performance.

25

---- CLEAN

20 -,0,- MULTINOISE
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0
Er 10
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Figure 6. Error rates with clean and multistyle training in noise, averaged across front ends.
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These results are consistent with Lippmann et al. [8], which indicated a performance improvement
using multistyle training.

Several experiments tested the effectiveness of data-reduction techniques on front ends with noisy
speech. The first experiments used principal components analysis (PCA). For PCA, multistyle speech was
used to both derive the PCA transformation matrix and to train the HMM speech recognizer. PCA pro-
vided minimal improvement in noise compared to standard multistyle training.

In another set of data reduction experiments, linear discriminant analysis (LDA) was applied to the
mel filter bank outputs, using the "clustering" technique described previously to separate the training data
into classes. Numbers of clusters and the training procedure were both evaluated and it was determined
that:

"• The recognizer achieved best performance when no clustering was performed on the input
states-the raw states from the HMM recognition were used as classes.

"• The recognizer performed best when both the LDA transformation matrix was derived and the
speech recognizer trained with multistyle speech data.

From Figure 7 it is clear that LDA performed worse than MFB cepstra for all SNRs. Experiments
using LDA with the "TIMIT" technique for generating class information showed similar results across all
front ends.

3.3 RESULTS WITH SPECTRAL VARIABILITY

Figure 8 shows the recognition results for the various front ends trained in clean speech and tested
with the various spectral variability conditions. The following points are worth noting:

"* The difference between the performance of the front ends was extremely small (never more than
1% difference between the error rates for best and worst front ends).

"* For the conditions with low baseline error rates (e.g., "clean" and "90" head shadow"), the MFB
cepstra outperforms the auditory models by a small amount.

"* For other conditions, the synchrony and EIH outputs slightly outperform MFB cepstra front end,
which has slightly better results than the mean-rate output.

The results of using multistyle speech for training is shown in Figure 9, where results are averaged
across all front ends. As with multistyle training with noisy speech, multistyle training resulted in
increased performance for every linear filtering condition.

Principal components analysis was then applied to multistyle training data; the recognition results
are reported in Figure 10. Unlike the PCA results in noise, the spectral variability results show a small but
consistent improvement using PCA.

12
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Figure 7. Error rates for MFB cepstra and LDA on mel filter bank energies in noise.

Using the clustering technique for class generation, LDA was then used with the filtered speech.
Before full recognition experiments were run, it was discovered that:

"* The recognizer performed best when LDA used 326 clusters for class. This is in contrast to the
results in noise, which showed best results with no clustering.

"* The recognizer also performed best when the LDA transformation matrix was derived from mul-
tistyle speech data but the speech recognizer was trained on clean data.

Figure 11 shows a comparison of MFB cepstra and LDA on mel filter bank energies, as described
previously. For clean speech and the head shadow conditions MFB cepstra is better; LDA performs better
for all other conditions. This is similar to results obtained across front ends with linear filtering; for the
more difficult conditions-as indicated by error rate with clean speech-alternative processing led to

* improved performance.

LDA was also performed on various front ends, using the TIMIT technique for generating class. The
results proved disappointing; MFB cepstra outperformed LDA for all linear filtering conditions. This is
believed to be due to a failure in the TIMIT technique of generating LDA class. To justify using one data-
base (TIMIT) to generate class data for a transformation of another database (TI-105), it had to be assumed
that for mel-scale filter bank log energies, the major difference between the feature vectors of the data

13
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Figure 8 Error rates for MFB cepstra and auditory front ends with spectral variability.

bases can be approximated as a constant difference, or roughly a linear filtering operation between the
speech of the two data bases. In this case, the LDA transformation matrix remains the same, so no explicit
cross-data base transformation is necessary. On the other hand, the nonlinear nature of the auditory models
demands a normalization between data bases. From the poor results using this method of calculating LDA,
it appears that linear filtering alone cannot explain the major acoustic difference between the data bases,
and that the normalization used with the auditory models was not sufficient.

3A4 RESULTS WITH NOISE AND SPECTRAL VARIABILITY

Experiments were also conducted using LDA on mel filter bank energies in the presence of both
noise and spectral variability. The methods for training the LDA and the recognizer that were used in the
above experiments were combined; i.e., the LDA parameters were calculated using both multinoise and
multicondition speech, while the speech recognizer was trained only on multinoise speech. No clustering
was done on the HMM states, so there was a total of 1050 classes. Time dictated testing using only a few
noise and spectral variability conditions; Figure 12 shows the results; a dramatic improvement in error rate
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Figure 9. Error rates for clean and multistyle speech with spectral variability, averaged across all front ends.

for conditions with linear filtering. With no linear filtering, MFB cepstra outperforms LDA, but with all
other spectral variability conditions, LDA results in significantly better recognition performance for all
noise levels. These results are consistent with Hunt and Lefebvre's work [7] suggesting that LDA offers
significant performance improvement with corrupted speech when LDA parameters can be trained using

corrupted speech.

3.5 VALIDATING THE MFB CEPSTRAL FRONT END

Before comparing the Seneff and EIH auditory models to the MFB cepstral representation, several
errors in the existing implementation of the EIH algorithm were corrected. During this process, parameters
of the EIH algorithm were set to provide "reasonable" performance on samples from the test corpus. It was
also decided to verify that the existing parameters of the MFB cepstral front end were reasonable choices

for the test corpus and recognition system.
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The following parameters of the MFB cepstra front end were varied:

"Number of filters: The number of filters in the linear filter bank were modified; 13, 16, 24
(default), 31, and 47 filters were used. This was varied by changing the filter spacing in both the
linear and nonlinear frequency regions. The edges of the filter responses remained at the center
frequencies of the adjacent filters so that filter bandwidth decreased as number of filters
increased.

"Number of cepstra: The number of cepstral coefficients was varied; 10, 13 (default), and 16
cepstra were used before calculating first differences and dropping the first cepstral coefficient
corresponding to raw energy. This resulted in overall feature vector sizes of 19, 25, and 31.

The HMM recognizer, using an MFB cepstral front end with these various parameters, was tested
across all noise conditions and spectral variability conditions. Not surprisingly, the MFB cepstral front end
responded quite differently to different noise levels and spectral variability conditions, but overall, the
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default choice of parameters (24 filters and 13 cepstral coefficients) provided good, and usually the best,
performance across conditions.

3.6 COMPARISON OF RESULTS WITH OTHER SITES

Other sites have obtained different results than those shown here. In particular.

. Ghitza at AT&T Bell Laboratories [6] showed significant performance improvement with an iso-
lated word recognition task using the EIH model.

. Carnegie-Mellon University (CMU) [21] reported similar significant improvement using both
the mean-rate and synchrony branches of Seneff's auditory model with a continuous speech data
base and recognizer.
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Lincoln's results suggest very small performance improvement using the auditory models, not the

significant differences found elsewhere. There could be several reasons for the differences. Referring to
Ghitza's and CMU's results:

Both studies used a linear predictive coding (LPC)-based cepstral front end as the control repre-
sentation; the CMU front end also uses a bilinear transform to approximate a "mel-like" fre-
quency warping [20]. LPC-based front ends do not, however, typically perform well in noisy
environments. This study uses a filter bank-based cepstral front end instead.
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" Baseline error rates for both studies are significantly higher than here. It has been shown that as

the baseline error rate increases, the differences between the traditional front end and auditory
models increase. Also, it has been noted that at such high baseline error rates, a recognition sys-
tem's usefulness is questionable.

"• Ghitza and CMU added artificial noise, while Lincoln used recorded speech babble. It is unsure
what the effect of this difference might be.

"* Lincoln uses a continuous observation HMM system as the speech recognizer. Ghitza used a

system based on dynamic time warping (DTW), while CMU used a discrete observation HMM
system. It is unsure how the different recognition systems might affect performance.

To evaluate the difference in control front ends (LPC-based cepstra as opposed to FFT filter bank-
based cepstra), software was acquired for the CMU front end to compare Lincoln's MFB cepstral front end
to the CMU LPC-based scheme. The same data base and recognizer as used for all other isolated-word
experiments were used here and tested with both speech babble and artificially generated white noise to
study the effect of the noise type. Three different LPC orders (equal to the number of predictor coefficients

and the number of vocal tract poles) were used: 8, 14, and 18.

Figure 13 shows the results of the evaluation. The performance of the MFB cepstral front end in both
white noise and speech babble is compared to the best-performing LPC-based representation. Clearly, the
MFB cepstral front end significantly outperforms LPC, especially in noise. This is not terribly surprising,
because finding the poles of a vocal tract system function using LPC with noisy speech can be interpreted

as finding the roots of a moderate order polynomial with noisy coefficients. These roots are known to have
high variability. Curiously, performance was better with the speech babble than with the white noise.

It is believed that these results show the major reason that other studies have found much more per-
formance improvement with auditory models than shown here. Given the same auditory model perfor-
mance, a study with a poorer performing control front end (such as LPC) will show greater relative benefit
of auditory models over traditional techniques. It is easy to see how an auditory model might perform bet-
ter than LPC, as other studies have shown, but perform very similarly to or only slightly better than a bet-

ter-performing control such as MFB cepstra, which is shown here.
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4. CONCLUSION

Experiments were conducted to test the effectiveness of several signal-processing schemes as front
ends to automatic speech recognition systems. Front ends were evaluated in clean speech, speech degraded
by "babble" type noise, and speech processed with linear filters simulating "real world" acoustic transfor-
mations.

For an isolated-word recognition task:

With additive speech "babble" as noise, auditory models perform very similarly to MFB cepstra
but can slightly reduce recognition error rate. With MFB cepstral error rates ranging from 0.5%
to 26.9% depending on SNR, auditory models could perform as high as four percentage points
better. Large changes are seen at quite high baseline error rates, but here the usability of the rec-
ognizer is questionable.

With speech degraded by linear filtering, where MFB cepstra showed error rates ranging from
0.5% to 3.1%, the EIH and Seneff synchrony auditory outputs could slightly improve perfor-
mance by as much as 0.4% for conditions with high baseline error rates.

* Multistyle training was quite effective with both noise and spectral variability for all front ends.

* Principal components analysis (PCA) did not improve performance in noise and offered only
slight improvement (as much as 0.4 percentage points, with baseline error rates ranging from
0.6% to 2.6%) with spectral variability.

Linear discriminant analysis (LDA) on mel-scale filter bank outputs, using clustered HMM
states as class, performed worse than MFB cepstra in noise but better than MFB cepstra for the
more difficult spectral variability conditions.

LDA provides dramatic improvement in error rate with speech degraded by a combination of
noise and spectral variability when LDA is trained on a combination of noisy and filtered
speech. With MFB cepstral error rates as high as 95%, LDA could reduce error by as much as 90
percentage points. This is consistent with results found elsewhere [7).

The current parameters of the MFB cepstral front end-number of filters and number of cep-
stra--are a reasonable choice for good performance across noise and spectral variability condi-
tions.

Cepstral coefficients derived from a linear predictive coding (LPC) model perform significantly
worse than MFB cepstra when a recognizer is trained in clean speech and tested in noise. This is
theoretically expected, so the same result would be expected for continuous speech systems.
This result is likely the primary reason that other studies show much more performance
improvement with auditory models than is shown here; two other studies use an LPC-based
front end as the control representation.
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Preliminary experiments were also performed with some of the front ends using a continuous-speech
task as opposed to an isolated-word task. A continuous-speech HMM recognition system [I11 ] was used
with the ARPA Resource Management (RM) corpus [14]. It was found that:

"* PCA could improve recognition performance relative to MFB cepstra for high SNRs (above
18 dB). For lower SNRs, MFB cepstra outperformed PCA.

" Attempts to obtain reasonable continuous-speech performance with Seneff's mean rate and syn-
chrony outputs were not successful. Error rates were significantly higher than with MFB cepstra.
Filtering Seneff's outputs and changing important time constants within Seneff's model pro-
vided better "looking" psuedo-spectrograms, but recognition performance was still unaccept-
able. It is unknown why the isolated-word results with Seneff's model in the continuous speech
domain were not able to be duplicated.

More work clearly needs to be done in this area; current ASR systems focus primarily on continuous
speech tasks.

In summary, front ends based on the human auditory system perform comparably to, and can slightly
improve the performance of, an MFB cepstral-based ASR system for isolated words with noise and some
spectral variability conditions. The magnitude of the reduction in error rate is small relative to the required
increase in computation time. Data reduction techniques such as principal components analysis (PCA) and
linear discriminant analysis (LDA) improve ASR performance for some spectral variability conditions, but
LDA was especially useful in the case of combined noise and spectral variability. Auditory models are thus
most appropriate in situations where computational cost is not an issue. For selected conditions, PCA or
LDA alone can provide performance improvement at significantly less cost. As computer hardware contin-
ues to improve in performance at an appreciable rate, these issues may become less important.

The importance of having a suitable control representation when testing auditory front ends has also
been shown. When training with clean speech and testing with noisy speech, LPC cepstra are not suitable;
they perform much worse than MFB cepstra. Much of the difference that others have found between the
performance of auditory models and more "standard" representations can be explained by the lack of a
high-performing control front end.

One could interpret these results by arguing that speech-processing based on the human auditory
system cannot provide appreciable speech recognition performance improvement. One might also suggest
that traditional linear techniques are sufficient to code the relevant information necessary for high-perfor-
mance speech recognition, and thus any further improvement in overall system performance must come
from the later stages of the system. Lincoln does not believe that this is necessarily true. The human audi-
tory system is sufficiently complex that thousands of person-years of intensive research in the areas of
auditory physiology and perception have left even some fairly basic questions of auditory function unan-
swered. The models used here are gross simplifications, with components chosen not only to model phe-
nomena that are currently believed to be relevant for speech recognition but also to minimize
computational complexity. The methods used for converting auditory front end outputs into feature vectors
were largely dictated by the structure of the ASR system. For a "fair" test of the effectiveness of auditory
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models, researchers must do more work to discover better ways of incorporating features from auditory
models into speech recognizers. In the long run, ds auditory function and speech perception are better

understood, more parameters that are important for speech recognition should be uncovered that have not

yet been considered.
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